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Preface:

This report develops an analysis of the transient response

of a gun barrel subject to repeated firing. A finite-element

approach is used . A piecewise cubic approximat ion of the de-

flection ensures continuity of deflections and slopes at the

net points. Initially, linear and angular displac ements and

velocities are prescribed . This arbitrariness in the initial

conditions allows for residual mot ions from the preceding shot .

A digital computer program based upon the analysis has been de-

veloped . The program may be used for the period during which

the projectile leaves the muzzle by setting terms pertaining to

the projectile and the gas pressure equal to zero . If desired .

the program may be used to determine the static deflection of

the gun barrel. Horizontal transverse vibrat ions of the barrel

may be treated by discarding the acceleration due to gravity.

The projectile is treated as a point mass. Consequently, pro-

jectile balloting is not included in the theory. The effects

of a gun—barrel tuning mass , eccentricity of the breech ,

eccentricity of the recoil mechanism , stiffness and damping of

the supports , and prescribed motion of the gun foundation , as

well as Bourdon pressure and projectile—barrel friction are

included in the model. In the computer program , the t ime in-

tegrat ion routine employs Newmark’s beta method . The computer

program list ing is not included here. However , in formation on

the computer program is available by writing to

4
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NOTAT IONS

t — time . Dot denotes time derivative

x a ax ial distance alon g the barrel from the breech
(Fig. 1)

y — deflection of the barrel ; ~ ~y/3t

8 — notation of cross section of barrel . If shear
deformat ion is discarded , 8 ~y/~ x

L a length of barrel

a — rad ius of the bore

— coordinate of the tuning mass

— mass of the tuning mass (Fig . 2)

— moment of inertia of the tuning mass about a diametral
axis through its center of mass (Fig. 2)

m mass of the projectile

2 = mass of the breech block

M mass of the barrel

in = mass of the part of the barrel in the range greater
than x (Eq. 26)

T moment of inertia of the breech block about a trans-
verse ax is through its cen ter mass

g acceleration of grav ity

E Youn g ’s modu]u~.

e,d — lengths defin ing the eccentricity of the breech
(Fig. 1)

— angle that the barrel form s with the hor izon tal
(Fig. 1)

a spring constant for the recoil mechanism (assumed
constant

a viscous damping coefficient for the recoil mechanism

v — v(t) a speed of the projectile relative to the breech

a ~ ( t )  a displacement of the projective relative to the
breech. v
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p ~ p(t) gas pressure behind the projectile

F — F(t) axial frictional force of the projectile on
the barrel

u — u (t) = recoil displacement of the barrel (positive
backwards, Fig. 1)

P — P(t) — tension in the barrel at section x due to
inertia (Eq. 26)

= mass dens ity of barrel

x 1,  x2 .  . . . , x~ ÷1 net points. x~ 0, Xfl+l L

— x,~. This is the length of the j—th interval

= y(x~~, t)

constant  for  t rans la t ional  spr ing support at point

= constant  for  rotat ional spring support at section

= constant for  t rans la t ion  damper at point x
3

= constant for rotat ional damper at point x~

P. = value of P at x = Xj. Note that P,~ depends on thelocation ~ of the projectile

= 0~ (t) value of 8 at x =

r = shear coefficient (Eq. 8)

B~~ = coefficients for the Bourdon effect (Eqs. 24 and 25)

~~~ = coefficients for the axial inertia effect (Eqs. 28
and 31)

XT÷l ~;~g
Po~ x~t ahead of the tuning mass. XT < 

~~ 
XT+l

e’ ,e” — eccentricities of breech spring and damper (Fig. 1)

p (x)  = mass of barrel per un it len gth

n = number of segments; n+l — number of net po ints

7
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1. INTRODUCTION

A f in i te -e lement  method is used to analyze the t ransient

response of a gun barrel due to repeated firing . The dynamic

behavior of the barrel may be computed for the period in which

the projectile is in the barrel ; of particular importance are

the slope and the lateral velocity at the muzzle. By setting

to zero terms pertaining to the projectile and the gas

pressure , one may follow the gun response also for the per iod

after the projectile leaves the muzzle. The barrel is modeled

as a tapered elastic beam with finite degrees of freedom by

subdividing it into n intervals (finite elements) with n+l

net points (nodes). The general ized coordinates are the

deflections and the rotation e ,1 of the barrel cross section

at the nodes. Hence , there are 2(n+l) generalized coordinates .

Two additional coordinates that enter the equat ions are the

axial recoil displacement u of the barrel and the axial dis-

placemen t ~ of the projectile relative to the breech. However ,

these coordinates do not enlarge the system of differential

equations if the axial movements of the barrel and the projec-

tile are regarded as known func tions of time .

The breech is treated as a r igid mass with its cen ter

offset from the axis of the barrel . Viscous dampers (dashpots)

may be located at all nodes or they may be provided at only a

few points , since in the computer program , a damper can be

eliminated by setting its coefficient equal to zero . Also the

offset of the breech may be set equal to zero if the center

of mass of the breech lies on the axis of the barrel . The

8
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structure supporting the barrel and the breech is modeled as

a set of independent translational and rotational springs and

dasbpots at the net points. At nodes where there is no such

support , the spring constants and/or dashpot constants are

set equal to zero. A tuning mass may be located at an arbitrary

point along the barrel.

The foundation upon which the gun barrel and its supports

rest is regarded as a rigid body that moves in a prescribed

way . In general , it has six degrees of freedom . However , in

a linear theory, oscillations of the barrel in a vert ical plane

are uncoupled from transverse horizontal displacements. Also ,

the rotat ion of the barrel about its axis is uncoupled . Con-

sequently, atten tion may be restricted to a plane motion of the

barrel. Oscillat ions of the barrel in a fixed vertical plane

are considered Horizontal lateral oscillations may be super-

imposed . The program for horizontal lateral oscillat ions is

the same as for oscillations in a vertical plane , except that

effects of gravity are eliminated .

The differential equations of motion may be obtained from

Hamilton ’s principle , as the Lagrangian equat ions for a noncon—

servative system . tn terms of the virtual work SW and the

kinetic ener gy T , Hamilton ’s principle states that

t if (ST + SW)dt  = 0 (1)

t o

• where t denotes time. However , because cer ta in con tr ibutions

9
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to the differential equations of motion can be written down

directly in terms of well-known finite element procedures , it

is expedient to do so. Hence , in this report Hamilton ’s

princ iple is used mainly as a guide to verify the form of

certain unusual effects such as the Bourdon effect , the axial

inertia effect and other pressure effects that are inherent in

gun systems .

Con tribu tions to SW come from several sources . One source

is the action of gravity on the breech , the barrel , the

projectile , and the tuning mass . Another source is the axial

frictional force of the projectile on the barrel. It introduces

a nonconservative effect . Another contribution comes from the

— so—called “Bourdon effect” , which arises because , in the bent

barrel , the area of the bore above the neutral plane , on which

gas pressure acts , is slightly greater than the area below the

neutral plane. Still m other effect contribut ing to SW is the

axial inertia of the recoiling barrel , which initially exerts

a straightening influence. The contribut ion of the strain

- 

• 

energy of the barrel due to fl exura l stresses , etc. may be

introduced as a negative contribution to -SW. This latter effect

essentially results in a finite element model of the gun barrel

in the final differential equat ion form for the gun system .

Accordingly, a finite element beam model is used to incorporate

this effect in the differential equat ions , rather than derive

this effect from Eq. (1) directly. Finally, to account for the

ef fec ts of the suppor ting struc ture , the support structure is

regarded as sets of linear rotational and translational decoupled

springs and dashpots located at the nodes of the finite element

10
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model of the barrel. These elements are assumed to be attached

to the gun foundation which may undergo prescribed motions .

The spring constants and the damping constants for the trans—

lat ional and rotational springs and dashpots at node j  are

respectively (ct,)~ c~~) and (~1
,j~ i’~~ ) .  At a node where there is

actually no supporting spring or dashpot , the spring constants

and/or dashpot constants are set equal to zero in the computer

program .

In genera l , for a finite element model of the barrel , the

net. v i r tua l  work may be expressed as

n+1 11+1
SW Q . S y .  + ~~~~ ~~~~~ + RSu + SS~ ( 2 )

j = 1 j = l

where ii = the number of elements (n+l = number of nodes) and

where ~~ Q,~ if, and S are the components of generalized force;

i.e. , the coefficients of the generalized coordinates u , 
~~~~, 

y .,

in the expression for SW .

The kinetic energy T is the sum of the kinetic energies of

the breech , the projectile , the barrel , and the tuning mass.

It is a function of the generalized coordinates u , ~ Y,j~ ~~

where dots denote derivatives with respect to time t. Conse-

quently, the differential equations (the Lagrangian equations)

of mot ion are , by Hamilton ’s principle ,

i~~! ~~i = Q  ~~~~ .i - Q ’ .
dt 

~~ 
~Yj i’ dt 

~~~~~~~ ~~ 
~~~~

‘

j — 1 , n+l. (3)

11 
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d 3 T  3T d~~~T ~T— - ~~— — R , ~~— — - — ~~~~ — S .  ( 3  ) con t d
u,U ut

where Q~ . Q ,  R , S are the components of generalized fo rce  (E q . 2 ) .

The Lagrange equat ions for  u and ~ are i r r e l e v a n t , i f  we know

u( t )  and ~ ( t )  as f u n c t i o n s  of t ime  t .  It  is to be noted t h a t

— 3T/ ~~~8~~ — 0, since T — T ( u ,  
~~~~

, 

~~~~~~~ 

8 1 ) .

By the usual procedures of finite element methods , Eqs. (3)

may be written in the form

M~~ +C X
# Kx - f(t) ~.4)

where M — M ( t ) ,  C - C(t) and K * K ( t ) . are the mass , damping

and stiffness matrices for the gun system , f(t ) is the driv ing

force vector and x is the vector of genera1t..~ed coordInates ,

• SA T -
— t y l , 8 i ,  Y 2 ’  ~ 

~‘ n + l ’  ~n + i  ‘

The Lagrange equat ions (Eqs , 3 or 4 ) are  i i  n ear  ~o~’ontt order

d i f f e r e n t  ial equat tons fo r  the  unknown funct tons y t and ~

They are adap t ab l e  to va r ious  i nt e g r a t  ton me t hods . ~ii~’h as the

Ru n g e — K u t t a  me t hod , Newm ark ’ s beta  method , H ou b o l t  ‘ s method ,

etc . D i sc o n t i n u i t i e s  occur a t  the Instantaneous locat ion ot’

the projectile , since , for  exam p le , the gas pressure behind the

projectile , causing the Bourdon effec t , term inat es t here .

However , discontinuities do not ob s t r u ct  the  f i n i t e  element

method . This  is an advantage  over t he di ret ’ t a pproach v i a t he

differential equations of beams , since wit h the l a t t e r  formula-

tion , the action of the project Ito t~-~ described wt th a i SA t rac

d e L t a  fu n ct  ion or a Heav is ide s t op funt ’ t ion . These d i t ’ t’ i ~‘u t it’ s

12 
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are avoided by the  f in i te -e lement  t r e a tmen t .  A computer program

based on Newmark ’ s beta method has been devised for solving the

differential equations for arbitrary initial values y
3
(O), O~ (O)

and ~j(O). e1(O). Vertical bending and horizontal bending of

the gun barrel are decoupled in linear theory. Both of these

types of deformation are covered by the program . For horizontal

motion , there is no gravitational effect.

The program provides the history of the motion of the barrel

from the initial instant at which the projectile is fired , until

the projectile leaves the muzzle. In addition , it may be used

for the period after the projectile has left the muzzle. To

account for this latter period , all terms pertaining to the

projectile (e.g. , gas pressure , projectile mass , friction) are

dropped .

To implement the program , we must know the recoil displace-

ment u (t), the projectile displacement 5,(t) along the barrel ,

the base pressure p(t) on the projectile , and the frictional

force F(t), between the barrel and the projectile. If ~(t) and

p(t) are known , F(t) is determined by Newton ’s law applied to

the axial motion of the projectile. In applying the program

to an ac tual gun system , the spring constants (& ,j. ~~~ and the

damping constants (i~~, ti~ ) of the supporting structure must be

estimated . Because of the complicated nature of the structure

and the pecul iar damp ing dev ices in use , this may be difficult.

Of part icular significance for the accuracy of shooting are

the muzzle displacement , 
~n+l’ 

muzz le rotation and the

muzzle velocity ~~~ at the instant that the projectile leaves

13
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the barrel. The program permits a study of these quantities

corresponding to var ious initial motions and deflections of

the barrel at the instant of firing.

2. DESCRIPTION OF THE MATHEMATICAL MODEL

Figure 1 represents a gun barrel with mass M and elevation

angle ~. Axes (x , y) move axially with the barrel as it recoils ,

but they undergo no lateral displacement . The projectile is

regarded as a po in t mass m . There fore , balloting of the projec-

tile is not considered . A short time t after the projectile

is fired , it lies at the barrel point x = ~ (t), as shown in

Fig. 1. The axial velocity of the projectile relative to the

barrel is v(t) — ~~~~. The axial frictional force of the projectile

on the barrel is F(t). The gas pressure driving the barrel is

p(t). There is a tuning mass rn.r with constant coordinate i.

Its center of mass is considered to lie on the axis of the

barrel . Its moment of inertia about a transverse axis through

its cen ter of mass is tT~ 
The breeLh is regarded as a rigid

block with mass 2 and momen t of iner tia Y abou t a transverse

axis through its center of mass . The location of the center of

mass is defined by two lengths , e and d shown in Fig. 1. The

• axial recoil displacemen t is u(t). The breech recoil spring

and recoil dashpot are assumed to be linear . Their constants

are 
~~B’ ~~

) and the ir eccen tr icities are (e ’ , e”), as shown

in Fig. 1.

If there is initial bending of the barrel due to weight ,

unsymmetr ical thermal grad ien ts , or manufac tur ing imperfec tions ,

f 14
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the bending is aggravated by inertial react ion between the barrel

and the projectile. Axial friction F(t) also excites motion of

the barrel. Another disturbance comes from the so-called

“Bourdon ” ef fec t , wh ich ar ises because , in the bent barrel ,

the area of the bore above the neu tral p lane , on which the gas

pressure acts , is slightly greater than the area below the

neutral plane. Still another effect contributing to the bending

of the barrel is axial inertia of the recoiling barrel and breech.

3 . CONTRIBUTIONS OF VARIOU S PARTS OF THE SYSTEM AND OF VARIOUS
EFFECTS TO THE EQUATIONS OF MOT ION

3,1. Strain Energy of the Barrel . The barrel may be

regarded as a tapered elastic beam of length L. If bending

strain energy only is included , the strain energy per unit length

is proport ional to the square of the curvature . If the effect

of transverse shear deformat ion is included , an appropriate

term for the shear energy must be added . In this report these

energies are taken , respectively, as (1)

• UBending = EI(y”)2dx (6)

USh - GA(y ’-O)2dx (7)

where primes denote derivatives with respect to x , y = the

lateral displacement of the barrel , e = the rotation of the

barrel section (Note that if shear deformation is not included

15
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the rotation 8 — y ’ , the slope of the axis of the barrel),

El — the bending rigidity and GA — the shear rigidity of the

beam . By Ham ilton ’s principle , these energies contribute

terms to the components of generalized forces (Eq . 3) or

equivalently to the stiffness matrix K (Eq. 4).

In the usual method of finite elements (2), the barrel is

divided into n in tervals (elemen ts) of len gth A 1, A2, .. .,

by points x1, x,~ x~~ 1, where x
~~1 

is the

coord ina te of the muzzle (Fig . 1). These poin ts need no t be

equally spaced . Then with y taken as a cubic polynomial in x

in each interval of length A,3 , and 8 taken as a correspon ding

quadratic polynomial in x , the element stiffness matrix for the

jth element is (see Appendix I), for  j  = 1, 2 , . .  . , ii ,

12 6A —12 6A

E I. 6A ~
2(4+r) —6A

k .  = ‘~ ( 8 )
A~ (l+ r)3 

—12 — 6A 12

6A A 2 ( 2 — r )  —6 A ~
2 (4 + r )

— — 3

where r — l2E I / ( A G L2) and = X
j~~1 

— x3 . Appropr ia te  addi t ions

of the matrices are required to incorporate the element

sti ffnesses into the struc tural sti f fness  ma tr ix K of Eq. (4)

(2). The e f fec ts of shear deforma tion may be discarded by

setting r 0 in Eq. (8).

3.2. Certain Effects Related to Pressure . Rigid Parts and

Supports. The generalized coordinates are taken to be the dis-

placements the rotat ions 8~~, the displacement ~ of the

projectile with respect to the breech , and the axial displacement

16
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u of the barrel and the breech (as no ted prev iousl y ; see Fig. 1) .

The breech is regarded as a r igid block of mass 2 and momen t of

inertia I about its center of mass. The center of mass of the

breec h may be o f f  center from the axis of the barrel . The

• 1 eccentricity of the breech is specified by two lengths , ci and e

(Fig.  1),  There is an axial spring with constant 
~B 

and an

axial dashpot wi th  constant 
~B at the breech. These elements

j are of fse t  distances e~ and e” from the axis of the barrel (Fig. 1).

Movement of the breech transverse to the barrel is restra ined

by a spring with constant and a dashpot with constant

These are in~ 1uded among springs and dashpots with constants

and that act at the nodal points on the barrel. Their

e f f ec t s  will be discussed la ter .

3.2.1. Action of Gravity on the Breech. By Fig.  1, the

descent of the cen ter of mass of the breech due to d isp lacemen t

a t x — O i s

ii sinct — cosa +(d cos~ — e sin~ )81

where ~ is the angle of inclination of the barrel with respect

to the horizontal. Therefore , the contribution of the action

of gravity on the breech to the variation of the virtual work is

2gL~ u sincz — 6y 1cosa +(d cosa - e sin~~ 581] (9)

By Eqs. (2) and (3), it is seen that the coefficients of du ,

6y 1, sSO
1 

in Eq. (9) contribute to the right—hand side of Eqs. (3).

With Eqs. (3) written in the form of Eqs. (4), the coeff ic ien ts

of ~5u , 45y1, â8~ 
contribute to the right—hand side of Eqs. (4).

17

A ______



3.2.2. Contribution to 6W of Axial Force on Projectile.

The projectile is subjected to the axial force ~ra 2p—F , where p

is the gas pressure behind the projectile , a is the radius of

the bore , an d F is the ax ial f r ictional force of the barrel on

the projecti le. The e f f ec t of the shock wave ahead of the

projectile can be included in F. The contribution to 6W of the

axial force on the projectile is , therefore ,

(iia2p—F)(6~ — ôu) (10)

3.2.3. Contribut ion to 6W of Axial Movement of the Barrel.

Since pressure p also ac ts on the breec h , the contribution of

the axial movement of the barrel to 6W is

Mg(sincz)6u + (71a2p—F)du (11)

where M is the mass o f the barrel , and where the term Mg(sinc&)

is the contribution of the axial component of gravity.

Accordingly, the net contribution to 6W from the breech ,

the axial force acting on the projectile , the axial movement

of the barre l , the breech spring, and the breech damper is ,

by Eqs. (9), (10), (11),

6W

+(2+M)g sina] Su +(~~a
2 p —F) 6~ (12)

—2g(coscz)6y1 + [2g(d cosc~ — e sinct)

+csBe
(u_e el)

.4. 
~B
e (u_e 9l))~~

el

The terms involv ing 
~B 

and 
~B 

in Eq. (15) come from the fact

that the compression of the breech spring is u—e ’3 1. Consequently,

18 
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the resisting forces of these elements are ctB
(u_e el) and

MB
(u_e el). The coefficients of 6u , 6~ , 6y 1, 68 1 contribute

to the corresponding terms in Eqs . (3) or (4).

3.2.4. Contribution to 6W of Dampers and Supporting

Structure . The contribution to 6W from rotational and transla-

tional dashpots at point X
j 

is

— (13)

where (~~
, ti

,
) are constants for the dashpots , and the dot

denotes time derivative . At a node where there is no dashpot ,

I.i
j 

= t.i
,; 

— 0.

If the supporting structure can be regarded as a set of

decoupled springs located at the nodes , the contribution of the

springs at node j to 6W is

— a~~~68~ (14)

Accordingly, the contributions of the supports and dampers to

6W is

n+l n+l
6W — E (Iij~1~+ctjY~ )6Y~ 

— E ~~~~~~~~~~~~~ (15)
j—l j—1

Again , the coefficients of 6yj and 6.~ contribute in the appro-

priate manner to Eqs. (3) and (4). In particular , the coeffi-

cients of y,~, e~ contribute to the matrix and the coefficients

of ~~~~ e,~ contribute to the matrix C in Eq. (4).

19
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3.2.5, Action of Gravity on the Barrel. In the finite

elemen t method employed , the ex ternal loads (forces and cou p les)

are applied at the nodes only. If a distributed load or a con-

cen tra ted load is appl ied between nodes , they must be replaced

by equivalent systems of concentrated loads at the nodes. We

requ ire these equ ivalen t loads to be der ived in such a manner

as to be consistent with the method used in deriving the stiff-

ness matrix (Appendix A). Since the lateral component of the

gravity load acting on an element of the barrel is uniformly

distributed between nodes , the equivalent nodal force matrix

for the jth element of the barrel is

6

B -m .A~ g coSct 1

12 6 
= 1 ,2 ,.. . ,n (16)

—1

where rnj — the mass of the jth element and = the lengt h of

the jth element . By the method of finite elements , appropriate

addit ions of the matrices are required to incorporate the

element nodal forces into the driving force vector f(t), Eq. (4).

The effec t of the ax ial componen t of grav ity on the barrel

has been accoun ted for prev iousl y (see Eq . 11).

3.2.6. Action of Gravity on the Tuning Mass . In general ,

the tuning mass is located at some point between nodes , Figs . 1

and 2 . Since the lateral componen t of grav ity force on the

tuning mass is m,~ g cosa , th is force mus t be transformed in to

equivalent nodal forces for the element in which the tuning mass

20 
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is located . By the method of finite elements (Appendix A), the

equivalent nodal force matrix for the element in which the tuning

elemen t lies is 
—

1 — 3 s2 +2s3

(1 — 2 s  + s2)sA
f~~a _ ~ r g cos~ 2 3 (17)
- 3s — 2s

+

T

where AT — the length of the tuning mass element and STAT = the

distance from the left node of the element to the tuning mass .

Equation (17) accounts for the lateral component of gravity

acting on the tuning mass. In addition , the axial component of

gravity contributes to SW in the form

SW = 1
~T 

g (sinct)Su (18)

3.2.7. Action of Gravity on the Projectile. The absolute 
S

axial displacement of the projectile at time t is (~ —u ), Figs.

1 and 3. Then , the contribution to SW of the axial component

of gravity on the projectile is

SW mg (sinci) (Su — 6~ ) (19)

The effect of the lateral component of gravity on the projectile

is included in the same manner as for the tuning mass (Eq. 17)

where AT, 5T are replaced by .1~,, ~~ respectively. In addition ,

it is to be noted that ~~ is a function of time t . since ~

In studying the effect of gravity on the projectile , it has been

found by actual computation that this effec t is extremely small

for projectiles of the 20—40 mm class,

- .: _
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3.2.8. Axial Friction Effect of Projectile on aarrel. The

axial frictional force F(t) exerted by the projectile on the

barrel is assumed to be a known function of time t. Alternatively,

it may be computed if the pressure acting on the projectile and

the projectile acceleration are known as functions of time .

Also , it may be expressed as F(s), where x = ~,(t) locates the

projectile in the barrel. This is a distance s along the curve

of the axis of the barrel (Fig. 4).

There is a subtlety in the calculat ion of the work that

force F performs on the barrel , because the projectile is

sliding in the barrel . For example , if a grinding wheel acts

on a fixed plate , the frictional force of the grinder performs

no work on the plate because the plate does not move . However ,

the frictional force of the plate performs negative work on the

grinder .

The axial movement of the projectile during an infinitesima l

time dt does not affec t the work that the projectile performs

on the barrel . Consequently, in computing SW , we set dt = 0.

The corresponding point on the curve y + Sy  c o n s e q u e n t l y  a l s o

l ies a distance s alon g the curve . The componen t of F along the

virtual displacement determines SW (Fig. 4). We have

xl

y — y(x), s 
=f  

v’l + (y)Z dx

0

Also , along the curve y +

s . f  v’l + ( y ’ + S y ’)2 dx

0

22
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Since y << 1 ,

s~~~~xl +~~~ f ( Y I ) 2 d

and

s ~~x2 + ~~/2 ( 2 
+ 2y ’Sy ’)  dx

Therefore,

= ~ = 

~~f 

(~~‘)~ dx - (y ’2 + 2y ’Sy ’) dx

and Since x1 =

dx — 

~~ 

( y ’2 + 2y ’6y ’) dx

an d we have

* ~~2 dx — (y ’2 + 2y ’Sy ’) dx

y ’2 dx

- -~~~~~~~~~-~~~~~ -~~~ --~~~~ - S ~~~~~~~~~~~ _____ 
- -  _ _______- 
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or - +

y ’Sy ’dx - 

~f 
y ’2 dx

However, since c is small ,

~

f 
~,, , 2 dx £[y ’(~~))

2 

S

Hence ,

~ i l  + ~ ty ’(~~)] 2} -f y ’Sy ’dx

and since y ’ << 1

c 
~~~ 

y ’5y ’dx

Using the trapezoid rule to evaluate this integral , and setting

~ X~~ we get

= —

+ (836e3+e45~4)A3 
+ .

+ 

~-
8r—1 69r—1 +8 58 )A 1)

The contribution to SW from axial friction is the component

of F in the x direction times £ plus the component of F in the

y direction t imes Thus, we have approximately

SW Fc + FO
rSY r

24
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Accord ingly, for the j-th interval ,

— — ~(e~so~ ~~~~~~~~~~~~~~~~~~ 
1 ‘_ .i ~~, r— 1

SW~~~~ O J ~~~ r

In addition , there Is the contribution F
~ r

SY r at point X r~
Consequen t l y,  the  c o n t r i b u t i o n  of a x i a l  fr i c t ion of the

projectile on the barre l to SW is

SW — FO ey — FA 1~ 1~S~~1 
— ~~

. F(.~~~\2)~~~S~ .,

— ~~
. F( +A

3)~
3
3
St~3 

— 

— (‘.20)

- 
~~~ 

F(A 2+~~~ 1 )t~~~1S~
)

1

— F 
~ r—l~~r~~~r

As with previous contributions to oW . the terms in Eq. (20) must

be incorporated appropriately Into Eqs. (3) or (4), with the

understanding that F F(t), or alternatively, F F(-~). In

particular , te rms in Eq. (20) contribute to the K matrix of

Eq. (4).

3.2 .9. The Bourdon Effect. The tendency of the pressure

p in a gun barrel to straighten the barre l Is called the

“Bourdon effect” . A line element of a generator of  the bore

above the neutral plane has length (1 - ay~~ sintfldx (Fig. 5).

The corresponding element below the neutral plane has Length

(1 + ay sine)dx . The difference of these lengths is

2ay
~~ 

sine dx. and the difference between the areas of Infini-

tesima l strips is accordingly 2aY~~ sine dt3 dx. The pro,lec t ioii

of this area on the neutra l plane is 2ay~ sin~~ d~ dx.

25
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Consequently, the effective load per unit length of the barrel ,

caused by the gas pressure is

— 2a2P Yf  sin2O dO = — 
~
a2pyxx (21)

Accordingly, the contr ibu tion of the gas pressure to SW is

SW - ~a
2p 

f 

y
~~ Sy dx

where ~ is the location of the projectile. We suppose that the

projectile lies at a net point xr ; i.e. , ~ = xr . This is not

unreal istic , since the terminal point of the pressure is rather

indefinite because of the shock wave ahead of the projectile

and the finite length of the projectile. By Eq. (21),

= - ffa2
:{f ~~~ 

Sydx + /3 
~~~ 

Sydx + (22)

+ 

f 
~~~~

Xr_1

Hence ,

SW = ~~~~ 6W~
- i_i

__________ - 
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where 6W~ is the contribution of the “Bourdon effectt’ to SW in

the .i—th interval (A ~ Xj~ 1 — Xj) .  We let 6W~ = 0 if j > r—1 ,

since , for x > X
r t p 0.

In the j—th interval , Eq. (1) of Appendix B yields

= 2a~ + 6ag x

and Sy da~ + x6a~ + x
2 6a~ + x

3 6a~

Hence ,

+1
sw j = _ira2~~

f 
(2a~ + 6a~x)(6a~ + x6a~ + x

2Sa~

+ x36a~) dx

Integration yields

2 j j6W,~ —ira ~ (2(x ~~~1 — X
j
) a26a0

+ (x 2
÷ — x2)(a~ 5a~ + 3a~Sa~)

(23)
+ (x~~~1 — x~~)(~ . a~ cSa~ + 2ag6a~ )

+ (x~~~1 — x~~)(~~ a~6a~ + ‘
~~
. a~6a~)

+ ~ (x~ ÷1 — x~~) a~ 6ag }

Introducing Eq. ( 2 )  of Appendix B into Eq. ( 2 3 ) ,  we get an

expression of the following form :



~~~~~~~~~~~~~~~~~

SW
1 

B~1~1
S~~ + ~~~~~~~~~ + B~381

Sy~ + B~481~ 16y1

+ B~1y1
6y

1~ 1 
+ B~2y1~ 1Sy1~ 1 + B~3O1

dY 1÷1 
+ B~4O1~ 1SY 1÷1

+ + B~2Y~÷16e1 
+ Bg3O~ 5O

1 
+ Bg4OJ÷168J 

(24)

+ B~1y1
iS8

1~ 1 
+ B~2Y1~ 1

SO
1~ 1 

+ B~3 O 1Se~~ 1 + B~481,,~1SO 141

If we introduce Eq. (2) of Appendix B into Eq. (23), and compare

the resulting lengthy expression with Eq. (24), we get expressions

for the coefficients B~~ . With Eq. (3) of Appendix B , they

simplify greatly. Finally, they reduce to the following:

B~1 = B~ 2 = 
6’n’a2p , B~~ = B~~1 

= - 
6-ira2p

B1 = 
ll-Tr a2p B1 ira2p

13 10 ‘ 31

Si ira2p B1 = — 
llcr a2p 

~3 = - 
ira2p

14 41 10 ‘ 24 10 ‘ 42 10
22ira p~

B~3 B32 = — , B33 B~4 = 15 (25)

2
= B~ = — 

Ira p
34 43 30 j

These equations hold for j > r-l , with p = 0. Hence , B
~ e 

= 0

if j > r—l . Also , the equations hold for r = 1; j = r—l 0 with

the understanding that B~~ = 0. The virtual displacements Su

and d~ contribute nothing to the Bourdon effect. It is to be

noted that the coefficients B~8 are not entirely symmetrical in

a and ~~~. The terms in Eq. (24 ) contr ibute in an appropriate manner

to the stiffness matrix of Eq. (4).
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3.2.10. Bending Caused by Axial Inertia . The tension

P(x , t) in the barrel due to recoil acceleration may be ca lcu-

lated by Newton ’s law with the assumption tha t the barrel is

rigid . Accordingly,

P — m u  (26)

where m is the mass of the part of the barrel in the range

greater than x.

If we suppose that the barrel is inextensional , the shorten-

ing of the chord due to bending is

~
.f y~~dx

where L * x~~1 is the length. of the barrel. Effectively, then ,

an element of length dx is shortened by the amoun t .
~~
. y~dx , and

the potential energy of that element due to shortening is ~~
. Py~dx.

Accordingly, the strain energy is augmented by the amount

~f 
Py~~dx

The integral is a funct ion of t , since y and P are functions

of x and t. Section properties of the barrel do not enter here ,

except insofar as they affect P(x, t). Equation (1) of Appendix B

now yields

V
1 

~ f P(a~ + 2a~x+ 3ag x
2 2  dx (.27)

L 
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in wh ich V
1 

is the potential energy in the j—th interval due to

shor ten ing of the chord .

We may wr ite V
3 

in the follow ing form , by virtue of Eq. (2)

of Appendix B ,

+ A3 82V
1 

— A~ 1
y
1
y
1 

+ A~2y1~ 1y1 
+ A~~3

8~~Y~ 14 j+l~
’
j

+ A~ 1y1
y + A1 + A1 + A1 81+1 22~i+lYl+l 230j~ j+l 24 j+l~ j+l

+ Ag1Y~ 83 
+ Ag2y1~~1

O + A1 8 8 + A~~ O
J~~

8
J 

(28)I 3 3 j j

+ A~1y1
O + A1 + A1- j+l 43

8
1
8
1÷1 

+

Without loss of generality, we may set A3
~:-zt3

It is reasonable to assume that P varies linearly in an

interval . Then , in the jth interval x
1 

< x ‘-

P = P
1~~

1(x 1÷1 — x )  + P,~÷1~~~~x - x
1
) (29)

Consequently,

J 
x~Pdx = ____________

(n+l)(n+2)~~. 
C ~~— (n+2)x

’
~ x. +(n+l)~~~

2)
j~~l

(30)
P

+ j+1 
~

. n+2
(n+l)(n+2 )~~1 ~~ 

— (n+2)x
1
x~

”
~ +( f l + 1) x 1 1

j

With Eq. (29), the integrals in Eq. (27) can be evaluated . Then .

with Eq. (2) of Apperdix B , we get V ,~ expressed as a quadratic

form in y1, y~ ÷1, 01, ~~~~ Using Eq. (3 )  of Appendix B , and

comparing w&th Eq. (28), we get 

~~~~~~~~~~~~~~ r~—r----— — 
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42 ~ A?(Pj

+P
~ +i ) 

L

Ag3 — ~~~ ~~~
1(3P

1
+P
1÷1

), A~4 
= ~~~ ~~

1(P
1
+3P

1÷~~
) (31)

A~2 = = — ~ ~~~ (P
1
+P

1~ 1), A~3 = Ag1 
a 

~~

- A~~1 
= ~~ P1. — 42 a — ~~~~~~ ~~+1

— A~2 = - ~~ P1, Ag4 = A~ 3 = - ~~~~~~

0 n+lAa~ 
= 0, Aa8 — 0

The contribution to SW due to b-ending caused by axial

inertia is

= —A~1y~ iSy
1 

— A~9Y~÷1cSY
1 

— A~381
5Y

1 
— A~481~ 15y1

A S — A1 S A1 0 5 A1 0 5— 2l~j ~j+l 22~j+l ~
“j+l — 23 j ~“j+l 

— 24 j+l ~j+l

— Ag2y1÷1501 
— Ag381

58
1 

— 44 01+1 56 1 (32)

— A~2y1÷1501~ 1 
- A~3e1

S01÷1 
-

The terms in Eq. (32) contribute in an appropriate manner to

Eq. (4).

4. KINETIC ENERGY EFFECTS

The kinetic energy is the sum of the kinetic energies of

the breech , the tuning mass, the projectile , and the barrel.

These energies contr ibute to the mass matr ix of Eq . (4) or the

total kinetic energy T of Eq. (3).
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4.1. Kinetic Energy Contribution of the Breech. The veloc-

ity components of the center of mass of the breech are ee 1 -

— dO 1 (see Fig. 1) and the angular velocity of the breech

is 81. Consequently, the kinetic energy of the breech is

TB — ~~
. 

~(eè 1 
— u)2 + 

~~~ ~~
‘l 

— dO 1)
2 

+ ~~ 10 1
2

where ~ is the mass of the breech and T is the moment of inertia

of the breech about a transverse axis through its center of mass .

Accordingly by Eq. (3), the breech contributes the term

- 01d) to the first ro.w of M~ and the term [Y+ .~(e +d2)J.

01 — ~d~1 to the second row of M~ . and in addition , the term

~eü must be added to the right hand side of Eq. (4) in the second

row .

4.2. Kinetic Energy Contribution of the Tuning Mass . The

contribut ion of the tuning mass to the kinetic energy may be

treated by means of D’Alamberts Principle. Thus , we represent

the kinetic effects of the tuning mass by an inertial force mTY

and an iner ti al coup le ITe directed as shown in Fig. 2. Hence

representation of y (0 — y ’) by a cubic for the element in which

the tuning mass lies (see Eq. 1. Appendix A or Eq. 1 . Appendix B)

y ields the concen tra ted force m,~J and the concentrated couple

1T6 as functions of the nodal displacements and nodal rotations

of the tun ing mass elemen t , x -
~ 
XT+l. Then by the results

for a concentrated force and a concentrated couple (-see Appen-

dix A) m,~J and 1T0 may be transformed into equivalent nodal

forces and couples .

T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4.3. Kinetic Energy Contribut ion of the Barrel. The kinetic

energy of the barrel contributes to the term M,~ in Eq. (4). By

the method of f in ite elemen ts , the mass ma tr ix in for  a beam

element may be computed and the contributions to the total mass

matrix U may be obtained . (See Appendix A for the mass matrix

i n . )

4.4. Kinetic Energy Contribution of the Projectile. As for

the barrel element , the projectile kinetic energy contributes

to the term M3~. However , in addition the projectile kinetic

energy con tr ibu tes to the terms Cx and Kx , because of the nature

of its motion (Coriolis accelerat ion , cen tr ipetal accelera tion ,

etc.). The analysis of these contributions are best undertaken

by a direct consideration of the accelerat ion effects of the

projectile upon the equations of motion of the system (see

Appendix C).

5. THE COMPUTER PROGRAM AND RESULTS

The computer program uses a f in ite element method to anal yze

the dynamic motion of a gun barrel. The problem is illustrated

in Fig. 6. The projectile tuning mass and breech are considered

to be rigid bodies. The barrel is treated as a beam and is

divided into a number of finite elements. The division points

for these elements are called nodes or node points , and there

are two degrees of freedom at each node : lateral deflec tion y.

positive upward and rotation y ’ , positive counter clockwise .

The nodes are num bered from the lef t end (the breec h end ) towar ds

the muzzle (see Fig. 7). If there are ~ elemen ts , there are N+l

nodes and 2N+2 degrees of freedom .

33 .
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Each of the elements may have a different length. The barrel

may be subdivided into a number of segments. Within each segment ,

the elements are the same length , but they may differ in diameter

if the barrel is tapered (Fig. 7). The tapered portions are

modeled in a “stairstep” manner .

The individual elements are treated as beams with four

degrees of freedom (deflection and rotation at both ends).

Usually, the Bernoulli-Euler beam theory is sufficient for most

problems . However , the program provides the option of including

shearing deformation and rotary inertia (Timoshenko beam theory).

In order to include shearing deformation , a cross—section shear

constant must be input . This may be obtained from the literature

[3] . For a hollow tube cross section , the value of the shear

constan t is

SHEAR 6(1+v)(l+i~~)
2 

2(7+6v)(l+ñj )2 + (20+12v) ill

where r~ — ~~~~~~~~~~~~~~~~~~~~ 

v Po isson ’s ratio .

The program permits translational and rotational springs

and dashpot supports at any number of node points in addition

to a recoil spring and dashpot at the breech. A Bourdon pressure

and a projectile—barrel friction f~~ce are incorporated in the

program , and may be included at the option of the user .

The program is intended primarily to be used for a numerical

time integration study of a gun barrel motion from the time of

first firing onward including the option of more than one round.

The numerical integration routine utilizes the Newmark “Beta

Method” [4]. If desired , the program can be used for determination

L •
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of the static deflected shape with no t ime variance involved .

In addition , provision for a shaking of the supports of the

barrel (due to vehicle motion or other cause) is available as

an option.

The program output is printed as follows : (1) the problem

title , (2) the input data, (3) the initial values of the posi-

tion , velocity and acceleration of the node points , (4) the

position , velocity , and acceleration of the node points at time

intervals dictated by the input requests , (5) a plot of the

muzzle deflection as a function of time.

Typical plots of muzzle deflection as a function of time

are shown in Figs. 8—16. The data is for the British Rarden

system for a range of spring stiffnesses K , damping coeff icients

C and various locations ot barrel lateral stopper pads. Figure 8

is for a single shot , whereas Figs. 9—16 are for bursts of three

shots. Figures 8—9 are for shots without the lateral motion

stopper pads , and Figs. 10—16 are with pads at various locations

of the pads. Study of these figures reveals the great importance

of the stopper pads. In general , the use of a stopper pad

reduces the tip (muzzle) deflections by a factor of ten or more .

Study of Figs. 11—14, for the case of the pad located 54 inches

from the breech end of the barrel, shows that increasing the

damping coefficient C also tends to reduce the muzzle deflection ,

particularly in the later firings . However , a predominant role

is played by the stopper pad in the control of muzzle displacement.

With. appropriate input data, other gun systems may be readily

studied .
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APPENDIX A:  FINITE ELEMENT MODELS

Al .  Beam Element

A typical element of beam has 4 degrees of freedom as shown

in Figure Al. The displacement of a typical point in the

element is assumed to be

y — a 0 + a 1x + a 2x
2 + a 3x

3 (1)

With the four boundary conditions

the displacement at a typical point can be expressed in terms

of the nodal displacements (u 1, u2, u3, U
4

) as fo llows: 
-

3x2 2x3 2x2 x3 3x2 2x3 x2 x3 U
1

U2

U
3

U
4

( 2 )

or y = N u  (2a)

The slope y ’ may thus be expressed in terms ~f the nodal dis-

placement as

2 2 2 2 u6x 6x 4x 3x 6x 6x 2x 3x 1
= 

U
2

U
3

U
4

(3) rr

:i
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The curva ture y” may likewise be expressed in terms of the

nodal d isplacemen ts as

“1 — r 6 
+ 

l2x 4 6x 6 12x 2 6x1 u1— .-. ~~~ ~~~~~~~~~~ — + —

~~~

.
, —

~~~ 

- —s., — + —.
~~~~ (4)

::
I

The relation between moment and curvature is (ignoring shear

deformation ; see Art . A2.)

CM] = [Eli [y”] (5)

The general expression for stiffness matrix is (derived by the

principle of virtual work)(2)

k =J B
T EB dX EI ~~~i2

3 

-

~~~~~~~~~~~~~

(6)
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This stiffness matrix for the beam element relates nodal loads -

to nodal displacements . The nodal loads are shown in Fig. A2 .

k12 . .

a 2

u3

U
4

f = ku

The equivalent load matrix for a distributed load is

obtained from 
-

~eq 
f N~ ~ dx (8) 

- 

-

where p — fp ] is the distributed load , e.g. , if p p0 (a con—

stant), then

~eq f NT 1p03 dx p0 [~21 

(9)

—A /12

(1) Uniform distribu t ion load equivalen t

w { “ 
_ _ _ _ _ _ _ _ _ _ _  

2



(2) Linear distributed load equivalent

T~~
1

~1w 
~~~~~~~~~~

(3) Quadratic distributed load equivalent

w~ ‘4w~

If a concentrated load is to be applied at some point other

than a node , it must be replaced by an equivalent system of nodal

loads also . Examp les o f equ ivalen t systems are given below :

(4) Concen t ra ted force

F F(l—3s2+2s3) F(3s2—2s3)

1 
_ _ _

FsiX(l—2s+s ) Fs~ (s—s )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-~~ -- -~~~~



(5) Concentrated couple 6c 2 6c
-r (s—s ) -

~~~

- (s—s )

L (j c I (L  
2c(l.-4s+3s ) c(2s.-3s )

A2. Beam Element Including Shear Deformation

Consider a beam element of length AZ (Fig. A3). Under

deforma tion cross section plane TOB of the beam , whi ch is

initially perpendicular to the beam axis , rotates into the

position T*O*B*. Because of shear effects , the plane T*O*B*

is no longer perpendicular to the displaced axis of ~the beam ,

Fig. A3 , but rotates through an angle ~ ~ 
y ’ . For equilibrium

of an infinitesimal length dZ of the beam element , Fig. A4 ,

we have

dM dF—F , = —p (10)

where M deno tes the bending moment , F denotes the shear force

and p denotes the lateral pressure (+ as shown ) that act on the

element dZ. The stress—strain relations for the beam element

are

M = ELp ’ , F — GA(y ’— 4) (11)

where E — the modulus of elasticity, G — the shear modulus . I =

the moment of inertia of the area , A — the beam cross sectional

41
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area , and prime denotes derivative with respect to axial length

Z.

Substitution of Eq. (11) into Eq. (10) yields the equilibrium

equa tions in terms of ~ and y as

GA (c~—y ’) (12)
GA(y ”—$’) • —p

In the simplest finite element shear model , the displacements

are assumed in the form (2)

— A 1 
+ A2Z + A3Z

2

2 3 (13)
y = A

4
+ A

5
Z + A

6
Z + A

7
Z

Assuming that the pressure p (or any other load between node

points of the beam element) is transformed into nodal forces

(see Eq. 3 , Art. Al), we find that substitution of Eqs . (13)

into Eqs. (12) yields the result

= A
1 

+ A2Z + A3Z
2 

(14)

— 
A2r A2 2 A3 ~y — A4 

+ (A1 — --~.—A 3)Z +-r Z + - ~— Z

where r = l2EI (15~AGA

is the shear deformation ratio . With Eqs. (14) the method of

finite elements (2) yields the beam element stiffness matrix

12 6A —1 2

6A .~
2(4+r) —6A A2(2—r)

k El (16)
A (l+r) —12 —6A 12 —6A

6A ~X
2(2—r) —GA .~

2(4+r)

42



_ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _

We observe that if r = 0, Eq. (16) reduces to Eq . (6).

The mass matrix in for the beam element is given by

NT PN d Z  (17)

where the N matrix relates the end (nodal) displacements x1, x2,

x3, x~ of the beam element to the displacements y, ~ (see Eq. 2)

and the p matrix is the mass density matrix (2)

0

(18)

0 1.AR2

where ~i = mass per un it length and R = the radius of gyrat ion

of the beam cross section.

Explicitly , the 4x4 matrix in may be written as

m~~ in12 in
13 

in14

m = 
2 

~ 12 ~ 22 ~ 23 in24 (19)
- 840(1+r) in13 ~~~ ~33 m34

m14 fit24 In34 fit44
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where
2

in 312 + 588r + 280r2 + 100811

2
m12 = ~~ 44 + 77r + 35r2 + !~. (84 — 420r)]

A

2
in 108 + 252r + l40r2 — 100813

in 14 — A[-26 - 63r - 35r2 
2 

(84 - 420r)] (20)

= A~ [8 + l4r + 7r2 + !~. (112 + 140r + 280r2)]
A

2
in23 

= A (26 + 63r + 35r2 + (-84 + 420r)]

2
— l4r — 7r2 + (-28 — 140r + 140r2)]

A

2
in
33 = 312 + 588r + 280r2 + 1008

A

2— 77r — 35r2 + (-84 + 420r)]
A

2
in44 A2[8 + 14r + 7r2 + (112 + l4Or + 280r2)]

A

We note tha t if shear deformation is discarded r = 0 , and if

rotary inertia effects are discarded R = 0 in Eq. (20), and

in is greatly simplified.
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A3 . Initial Stress Stiffness Mat rix Due to Axial
Tens ion Load P

The following stiffness matrix due to the axial tension

load P is employed (see 2 , p. 262).

~~ 2 
: 

:
~
:

2 
(21)

3A — A2 —3A 4A 2
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APPENDIX B: PIECEWISE CUBIC APPROXIMATION

- 
- Rectangular coordinates (x , y) lie in a vertical plane ,

with the x—axis coinciding with the axis of the undeformed barrel

(Fig. 1). The axes (x, y) are attached to the barrel , so that

they recoil with it , but they do not rotate or move in the y-

direction. The origin , x — y = 0, lies at the breech, The

barrel is divided into intervals by points x1 — 0, x2, x3 

x~~1, where x~~1 is the coordinate of the muzzle. These points

need not be equally spaced . The j—th interval is (X
j ~ x341 ).

In the j—th interval , we use the cubic approximat ion ,

a~ + a~x + a~x
2 

+ a~x
3; Xj  

X X~~ 1 (1)

— A~ Yj + B~ yj÷1 + C~ e~ + D~ ~~~ 
(2)

where = y~ , in which the prime denotes the derivat ive with

respect to x. We set X

,
~~+1 

— x~ . By algebra

a ~~~~~~~~~~~~~~~~~ B~ =

j —2 2 j — 2 2C0 = 
_A

~ X
j  

x~~ 1, D0 
_A
~ X

j  
X
j~~1

A
~ 

— 6A~
3x~ Xj~~1~ B~ — _ 6A~

3x~ X
j ~~~1 

(3)

• C~ ~~~~~~~~~~~~~~~~~~ D~ — A 2x~ (2x ~~1 +x~ )

— — 3A ’3(x~ + X
j~~1

)~ B~ — 3A~
’3(x~ +

46
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C~ 
_A 2(x~ + 2x~÷1). D~ — _A 2(x~+1 + 2x~ )

— 2A 3, Bg = —2A~
’3

, C~ 
a Dg = A

2

A~ , B~ , C~ , D~ are constants for the j-tb interval. It is noted

that we get B~ from A~ and D~ from C~ by interchanging x~~1 and

Xj. This property simplifies programming. Equations (1), (2),

and (3) define a piecewise cubic polynomial that is continuous

with its first derivative .

-

. 
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APPENDIX C:

ACCELERATION EFFECTS OF PROJECT ILE

The following kinematic analysis of the projectile accele-

ration entails no approximations. Let coordinate axes (x, y)

be fixed (Fig. Cl). The equation of the tube at time t is

x — x(s,t), y — y(s,t), where s is arc length along the tube .

Hence ,

x2 + y 2 — l
S S (1)

x cose , y — sine
S S

The location of the particle (projectile) mass m at time t is

x — x [~ (t), t) , y y [-~(t), t] (2)

where ~(t) is the arc length s to the projectile . Hence , by

Eqs. (1) and (2),

sine — y
5I~~(t), tL cos8 = x5[~~(t),t) (3)

where e is the angle of the tangent at point m (Fig. Cl).
The veloc ity componen ts of the particle m are

V
x 
a — 

~
x5(~~

,t)+xt(~~
,t) a ~~ cos~ + xt (~~

,t)

(4)

V
y ~~~~ — 

~
y5 ,t y

t (~~
,t )  ~ sine + y

t (~~
, t )

The terms xt (~~
,t ) and yt (~~.t) are the velocity components of

the contiguous point of the tube . The normal velocity component

of m is

48
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— —v~ sinO + ~~ cosO (5)

Hence , by Eqs. (4) and (5),

Vn — 
_x
~
(
~~
,t)Sin8 + y

~
(
~~

,t)coSO (6)

This result shows that V
n 

for mass m is the same as the normal

velocity of the contiguous point of the tube. The tangential

velocity of mass in is

V~ = ~~ cose + vy sine

— + x
~
(
~~
,t)cos8 -‘I . yt(~~

,t)sin8 (7)

or 
- 

v~ = + x~x5 + y
~
y5 (7a)

where x~x~ + denotes the tangential velocity of the con-

tiguous point of the tube.

Now the acceleration components of the mass in are

a
~ 

= , a7 
=

where x = f [~~(-t),t]. To derive expressions for a
~
, a

7
, we must

more generally consider the form x = ffp(t), q(t),]. Then ,

~~ 3 f .  az~= p + q

2 2 2 2d x  3f .. sf .. ~2~~~ f 3 f  ~2~~~ f= .
~~~ 

p + .
~~~ q + p —~~~ 

+ pq 
~~Tq + q -.....

~~
.

and since p(t) = ~ ( t ) ,  and q ( t ) - t , we have



- 
_ _

a
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (8)

Similarly

a
7 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (9)

The normal componen t of accelera tion of in is

an 
a _a

~
sine + a

7
cose — _a

~
y5(~~

,t) + a
7
x5(~~,t)

For brevity, we may wr ite x5(~~,t) = x5, etc. Hence , by Eqs .

(8) and (9),

= F
~
2(xsYs - x

55y )  + 2~ (x5~5~ 
— y5x5t)

+ (xy
~~ 

— y
5
x~~~) (10)

Note that the fac tor ~ cancels out of Eq. (10).
Recalling that the curvature of the tube is

= (x
2 + ~2 )l/ 2

r - ss  ss

since x
~5 

<< 
~~~~ h r  

~ ~~~ 
Also , x~ ~ 1. Hence the term

— x55
y~ in Eq. (10) is approximately h r .

The tangen tial component of accelerat ion is

a5 = a~
cos$ + a

7
sinO a

~
x5 

+ a
7
y
~

Consequently with Eqs. (8) and (9), we find

a
~ 

— ~(x~ + y
~~) + ~

2
(x5x55 

+ 75Y55)

+ + x5x~~ +

50
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Now , by geometry , x~ + y
~ — 1. Hence , x5x5~ 

+ = 0 and

+ y5y5~ 0. Therefore ,

I a
~ 

= + ~~~~~ + 
~~~~~~~~~~~~~~~~~~~ ~ 

+ x~~cose + y
~~

sine (11)

If we employ linearizing approximations cose ~ 1, sine =

e = y5. Also , then , x s, x5 = 1, x~5 = o~ x~ = 0. Then , by

Eqs. (6) and (7),

v~ yt(~~
,t), v

~ 
= + Y~

(c,t) Yt(~~
,t) (12)

and by Eqs. (9) and (10)

a~ = ~
y
~~
(
~~

,t )  + 

~
2
7xx~~~t) + 2~~y~ t(~~,t )  + 7tt~~~

,t) (13)

~~~~~~

and

a~ = ~
2
y,~~(~~,t )  + 2

~~
y
~ t
(
~~

,t )  + ytt(~~
,t) (14)

In the dif feren tial equations of motion of the barrel, the

question arises as to whether we should use a
7 

or a~ for the

force exerted on the barrel by the projectile. This question

may be resolved by considering the tube. When the tube is

bent , it is effectively a curved beam . For a curved beam , it

is natural to deal. with tractions or normal cross sections of

the beam. For a curved beam , we have the familiar equation

(15)
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where M is the bend ing momen t on a cross section an d Q is the

shear ing force on the cross section . If we deal with the large

deflections of a straight elastic beam , we have

• M = ~~~~ = EIK (16)

where K = l/r is the curvature of the neutral axis. Hence ,

Q = - E I~~~

The curva ture K is continuous at the poin t s = ~~~~, but the

derivative dK/ds is discontinuous . The discontinuity is equal

to mae . If we wr ite y as a func tion of x

K = 
(1 + 2)3/2 

= y ( l  - y + . . . )

Hence , with linear approximations , K = 7xx Also , ds =

(1 + 7
2)1/2 ~~ (1 + 

~~
. y~ ) dx dx , and therefore ,

Q = —El

Thus , if we treat the problem by means of the differential

equations , we must use

AQ — ma~ at x = ~~

or 
-EIAy,~ — ma~ at x =

Hence, it follows from this argument that we should use an , as

given by Eq. (14), to determine the force exerted on the barrel

by the projecti le. Ef fec tively the terms ~2 y,~~, 2~ ~~~~
contribute to the terms Kx , Cx , and Mx , respectively.
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Figure k2. Beam Element Including Shear Deformation
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Figure Cl. Projectile Coordinates
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